Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Type of study
Language
Document Type
Year range
1.
Turkish Journal of Electrical Engineering and Computer Sciences ; 31(2):323-341, 2023.
Article in English | Scopus | ID: covidwho-2301657

ABSTRACT

The world has now looked towards installing more renewable energy sources type distributed generation (DG), such as solar photovoltaic DG (SPVDG), because of its advantages to the environment and the quality of power supply it produces. However, these sources' optimal placement and size are determined before their accommodation in the power distribution system (PDS). This is to avoid an increase in power loss and deviations in the voltage profile. Furthermore, in this article, solar PV is integrated with battery energy storage systems (BESS) to compensate for the shortcomings of SPVDG as well as the reduction in peak demand. This paper presented a novel coronavirus herd immunity optimizer algorithm for the optimal accommodation of SPVDG with BESS in the PDS. The proposed algorithm is centered on the herd immunity approach to combat the COVID-19 virus. The problem formulation is focused on the optimal accommodation of SPVDG and BESS to reduce the power loss and enhance the voltage profile of the PDS. Moreover, voltage limits, maximum current limits, and BESS charge-discharge constraints are validated during the optimization. Moreover, the hourly variation of SPVDG generation and load profile with seasonal impact is examined in this study. IEEE 33 and 69 bus PDSs are tested for the development of the presented work. The suggested algorithm showed its effectiveness and accuracy compared to different optimization techniques. © 2023 TÜBÍTAK.

2.
22nd National Power Systems Conference, NPSC 2022 ; : 272-277, 2022.
Article in English | Scopus | ID: covidwho-2297166

ABSTRACT

This case study examines the Indian Institute of Technology Gandhinagar (IITGN) campus's monthly energy consumption profile in detail to understand how it varies according to academic calendar, seasonal variability, and the recent COVID 19 pandemic. In addition, a detailed assessment of the electricity bill and its sub-component calculations are intended to understand how the energy consumption pattern affects the overall monthly electricity bill. From this study, it is observed that the energy consumption of academic areas, hostel areas, and chiller plants account for 80-90% of total energy consumption. The on-site solar PV energy generation at IITGN campus accounts for 1014% of total monthly energy consumption, which varies greatly by season. The analyses performed in this paper were inferred by three years of historical data of actual energy consumption and monthly electricity bills. Based on the analysis presented in this paper some recommendations towards the energy conservation measures are also given. © 2022 IEEE.

3.
19th IEEE India Council International Conference, INDICON 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2282669

ABSTRACT

Healthcare is an energy-intensive sector to protect the people who are infected by viruses such as COVID-19. Many countries during this tragic period have opened movable health care systems in the rural locality. The non-availability of the grid in rural areas creates a critical situation for the essential medical equipment to support patients during the widespread pandemic. Unfortunately most of these healthcare centers have been lacking the principles of sustainability and good health standards to become a go Green Health Care Center. A Green Health Care Center enhances patient well-being by utilizing natural resources in an efficient and environmental-friendly manner to all the people. The proposed Green Mobile Health Care Center (GMHCC) is a solar-powered system specially designed to supply medical loads effectively for 24 hours service. The system is designed in the form of an easily transmitted portable product to other places of mobile healthcare camps. © 2022 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL